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Accelerating solitons for sliding-frequency filter systems
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The sliding-frequency filter equation is shown to have similarity solutions which travel with steady profile
but with constant acceleratianOver a wide range of the gain, filter strength and sliding-rate parameters, the
pulse envelope is very well approximated by a sech profile. However, when the sliding rate is large, the chirp
differs greatly from the usually assumed linear variation of frequency through the pulse. The amplitude and
chirp are found for small and moderate sliding rate by a perturbation analysis and, for larger sliding rates, by
solving a nonlinear eigenvalue problem for a nonautonomous differential equation.

DOI: 10.1103/PhysRevE.65.066615 PACS nunierd2.65.Tg, 42.65.Wi, 42.81.Dp

[. INTRODUCTION These are “accelerating solutions”—recently shown to exist
in a number of optical systen|gl—6], such as dissipative
Ultralong distance fiber-optic transmission using solitonsmedia with nonlinear saturable gain and photorefractive
has been demonstratft] using periodically spaced erbium- beams and existing ald@8] for a related integrable equation
doped amplifiers to counterbalance fiber loss. To suppress which the right-hand side of Eq1) is replaced by aZu.
amplification of unwanted noise, filters are introduced at |n Sec. Il, the reduction of E¢1) to an ordinary differ-
each amplifier, allowing passage of signals only in a narrovential Eq.(10) for a complex amplitud&V, consistent with
band centered at the central frequency of the soliton. Evethe similarity variableg(3) is obtained. The “acceleration” is

this allows degradation by noise, unless the soliton frequencgz &/2 while, in the equations and & appear only in the
is incrementally shifted at each amplifier. The soliton is able '

gradually to adapt to this frequency shift, but Iow-amplitudecomb'nat'ona/6\3/25.V [see Eq.('lo)]. In Sec. Ill, a pgrtur-
noise, being governed by linear equations, cannot. This is tth”‘tIon method valid for any give but for [v|<1 (.e.,
principle of sliding-frequency filtetSFP transmission(2]. | a/<6%?) yields a criterion determining the parameteand
In the limit for which amplifier spacing is short compared to the initial conditions which allow Eq10) to possess isolated

the dispersion length, an appropriate evolution equdgin pulse solutions. Section IV ext_ends analysi.s alloyving estima-
is tion of the parameters and initial conditions in EJ.0)
which yield isolated pulse solutions for larger valuesiof

. . . A constrained only by the relation
Nu=iugz+surr+|ullu=idu+ip(or+iaz)?u, (1) ¥y

. o . 272 B(1+4B8%)<64.
whereé is the(averagellexcess gaing is the filter strength,

— a is the(constank frequency-sliding rateZ is the(scaled The numerical and analytic results presented in Sec. V con-

propagation distance, arida retarded time. cernin
OE . g Eq.(10) for general values o8 and for both small
It is widely known that the undamped nonlinear Schro and large values ofv| show that a profile ofu| always

d|r_lger (NLS) equ_atlonj\/ u=0 _POSSESSES sech-envelope SOexists which is remarkably close to a sech curve. The expres-
lutions at all carrier frequencies, viz.

sions forb and for the pulse amplitude and width predicted
in Sec. Il are confirmed as good approximations for moder-
u=Aexi{Q,T+3(A?+05)Z}sechA(T-Q,2). (2)  ate values of»| (not just for|»|<1). Also, the frequency
within the pulse is found to have chirp which very well
These show that the perturbatiély in soliton speed is pro- approximated by a tanh curve, rather than the linear ramp
portional to the shift in carrier frequenayith associated Usually assumed. The tanh dependence is predicted by the
shift in wavelength being quadratic in bofh, and the soli-  Perturbation analysis of Sec. lll, as is the relation between
ton amplitudeA). pulse half-width and amplitude.
When an SFF system is designed to transmit pulses with

frequency shift—aZ which is linear in the transmission Il. ACCELERATING SELF-SIMILAR SOLUTIONS

“distance” Z, it is self-consistent to seek solutions to Ef). i .
having similarity variable We seek a solution to Edql) in the form

(=T+aZ?+bZ. ) u(T,2)=e""“?F(Q) @

with ¢ given by Eq.(3) and witha, b, 6, andF real.
*Permanent address: Department of Mathematics, Visvesvaraya Insertion of Eq.(4) into Eq. (1) and multiplication by
Regional College of Engineering, Nagpur 440011, India. 2+4i B yields
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(1+4B%)F"()+2{2B[(a—2a)Z—b]
+i[(1+4B%) 0+ (2a+4B%a) Z+b1IF' ({)
—{(1+48%)(0,)%+2(2aZ+b+45%aZ) 0,
+20,+ 42022~ 4B5—i[(1+482)0,,
+4B(aZ—2aZ—b)0,—4B0,+2Ba’Z?—25]}F({)
+2(1+2iB)[F(¢)]*=0. (5)

The ansatZ4) is self-consistent only if both the real and
imaginary parts of the coefficients in E¢) depend onf
alone. From the coefficient &' (¢), we deduce immediately

that 2a=a and that

0({,2)=—alZ+0())+D(Z),

so yielding the result®),,=0"({), 0,+aZ=0'({), and

0,=— &§+¢>’(Z). In order that the real part of the coeffi-
cient of F(¢{) is independent oZ, it is necessary that

d'(2)=3a%Z%+abZ+c,
for some constant,. This yields the expression
0(£,2)=0(0)—(al—co)Z+ta?Z3+ 3abZ?+c,, (6)
so that Eq.(5) reduces to
(1+4B){F" (O +i[0"(F+20" (OF'(1)]
—[0'(O]*F}+2(1+2i B){ib[F' () +i0'(HF]
+(al—co—id)F+F3

=0. (7)

It is observed in[2] that Eq. (1), for a=0, possesses
special solutions in which

F=Asechl, 6#=KZ+ClIn(sechTl),

which correspond tb=0, cy=K. However, since these so-
lutions impose four relations upak, C, K, B, andd, they
apply only for special combinations @f and 6. Fortunately,
there is a generalization

F=Asechk({—¢g), O=ClIn[sechx({—¢g)], (8)

which satisfies Eq(7) for a=0, b=0 provided that

oo 88 V9+328°-3
C3+.\9+3282 4B
A2=%1+ Vo+328%),
2 862 Co o Jo+32432. 9)

“T3vspr_Jorape O 2B
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This defines a solutioff (¢) and 6(¢,Z) to Eq. (7) with «
=0, b=0 for all choices ofé and B, with {, arbitrary.
Observe that expressiori8) become singular ag—0.

Since they describe isolated pulses in whick 0, b=0, it
is natural to rearrange E¢7) as

(1+485W'(Y)+2(1+2i B){ mo—i+|W|2W

=—2(1+2iB){iBW'(Y)+ YW, (10
where
fo= ‘3"508_ 0 v=6-¢y),
B=6", wv=6 %,
and
F(2)e'®O=sYAn(Y). (11

Ill. PERTURBATION ANALYSIS
Solutions to Eq(10) may be sought by expanding inas

W(Y)=W(Y)+»V(Y)+---, B=wvBj+---, (12
with W(Y)=AsechxYd®™ O (Y)=CIn(sechxY), with
k=06 Y2, A=s12A, and withA, C, andx given by Eq.
(9), provided tha{B is not too small. Then, inserting into Eq.
(10) and takingO(») terms gives the linear differential equa-
tion for complex \(Y):

LV=(1+4B%)V"(Y)+2(1+2iB)
X{(po—i)V+A2(sech kY)(2V+e2i0v+))

—2(1+2iB){kB;(C—i)tanhkY + Y} AsechxY.
(13

For Eqg.(13), the four-dimensional space of complemen-
tary functions has a two-dimensional subspace composed of
functionsevenin Y and a two-dimensional subspace of func-
tions odd in Y. Moreover,iW(Y) belongs to the first sub-
space andV’ (Y) belongs to the second. Since,¥as»o and
asY— — oo there exist two-parameter families of unbounded
solutions, theonly bounded contributions to the complemen-
tary function have the formic,W(Y)+c,W'(Y), with
Cy, C,real.

Since the right-hand side of E(L3) is an odd function of
Y, it is sufficient to seek odd, bounded solutiongy) [add-

ing to V the even contributioic,;W(Y) corresponds merely

to a constant perturbatiarc, to the phasé (Y)]. Moreover,
it is permissible to se¥’(0)=id; (d; real, since inclusion
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FIG. 1. Pulse envelope3V(Y)| governed by Eq(10) for g8
=0.001 and 0.002, and far=10 andv=30.
of c2\7v’(Y) in V(YY) merely corresponds to a perturbation in
{o- Thus, by solving numerically the three initial-value prob- o
lems >
LV,=0, V,(0)=0, Vi(0)=i,
LV,=—2(1+2i B)kA(C—i)tanhkY sechxY,

V2(0)=V5(0)=0,

FIG. 2. (@ Some pulse envelopa®V(Y)| for B=0.1; (b) the

LV3=—2(1+2i B)AY sechkY, V3(0)=V3(0)=0, corresponding chin®’ (Y).

to yield unbounded, odd functions, it is possible to sethct

— ,1/3 2\ 1/
andB; so that the combination WCY) = v (14487 "w(y),

V(Y) =dyV3(Y) + BoVa(Y) + V(Y) VY o= vLE 4B Ty =yIA,

remains bounded. The corresponding approximatidh ey B _

A A T 2y2/3’ A= 213 2\1/3° (15
~W(Y)+»V(Y) then has W(0)=A+0(»?), W’'(0) v(1+48%) v(1+48%)
=ivd;+0(v?), so that, correct t@(v), the maximum of . o
|W| occurs atY=0. Here,3 andA (or v) are parameters determined by the origi-

These calculations show that, for specified excess §ain nal Eq.(1), while B is adjustable. Our goal is to find pulse-
there exist isolated pulses which accelerate uniforwmligh  like solutions to Eq.(14) for which w—0, w'—0 asy—

a=1a) and for which|W(Y)| is very close to the familiar * - For specifiedd and A, solutions may be expected to

sech profileA sechkY = A sechk(Z— ). In these, the phase exist.only for selected values &, wiFh corresponding peak
has chirp given by ©'(¢)~ — «C tanhxY=—«Ctanhx({ amplitude|w| = || q, at some locatiory=yo=A uo. Then,
—¢,) and the parameteb in Eq. (3) is given by b the corresponding parameters B, &, andb follow from

~15Y2B,= &5 1B,. These profiles and chirp are foutste Eqg. (11) when« is specified, while the pulse is centered on

Figs. 1 and 2to give good approximations for a wide range the path

of values ofg not only for small sliding rater=a/5%?<1, T+ laZ+ ?BZ2=¢=(cola)+ (1+482)Y3 135112
but also forv=0(1). Moreover, the predicted value df z 0 0
gives a very useful approximation for the parameere- =/{,.

quired in the computations in Sec. IV.
Since cy and ¢, correspond merely to a shift in reference

phase and in th& origin, they are set to zero without loss of
generality.

Equation(10) may be put into the canonical form In seeking solutions withw| small except neat= ¢y, it

is appropriate to analyze the linearization

IV. GENERAL TREATMENT
W (y)+2(1+2i B){iBW' (y)+ (y—iA+|w|?)w}=0, ,
(14) w'(y)=v(y),
through use of the substitutions v' = —2(1+2i,8)(y—iA)w—2i§(1+2i,8)u, (16)

066615-3



D. F. PARKER, CH. RADHA, AND MARGARIDA FACAO

which may be put into the matrix formw’ v’)T
=A(y)(w v)T, where the eigenvalues &f are

N=a+iy=—i(1+2iB)

X{B* VB2+2(1+2iB) Ly—iA)}.  (17)

The real partsx.. and imaginary party- of these two ei-
genvalues ofA are found from the identity

(a—2BB)+i(y+B)=Fi(1+2iB)

X B2+ 2(1+2i ) Ly—iA),

so yielding the compact representation

A=A.=a.+iy.

p(Y)+|p(y)|
{Rep(y)+|p(y)[}V?

=—iB(1+2iB)+ (18)

where

p(y)=—(1+2iB){y+3B%+i(BB2—A)}.

Since Rep(y)+|p(y)|>0 for all y, the eigenvalues -
satisfy Re\ , =« , >a_=Re\ _. Moreover, except in some
vicinity of the location y=y=—1B?+28(B8B°—A) at
which Rep(y)=0, the eigenvalues have, >0 and «_
<0. Thus, outside this restricted portion of thexis, there
exists anunstable manifoldf solutions which, neaw|=0,
has W' v')"=~\,(w v)T. Along these solutionsw| de-
creasesasy decreases, with~\ , w. Also, there is astable
manifold on which v~\_w (and |w| decreases ag in-
creaseps Each of these manifolds is two dimensiofsince
the system (16) is invariant under all mappings
{w,v}p—{we's,ve's} for s reall. For chosenA, B}, the re-
quired pulselike solution to Eq14) is described by @on-
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x=I sechl'(y—yy),

with center aty=y,, with amplitudel’, and with half-width
I' 1. Neglect of the right-hand side is a good approximation
provided that

IT2+B2+2y|<T? for Tl|y—vy, <4,

which is possible provided thayy~—%(B2+T2), with
3=8.

For chosen{A,B}, a search procedure for and B is
used, starting from the valugs, and B; (see Appendix
Then, motivated by the approximatiog~I";sechl’;(y
—vy,), whereT';={-B2-2y,}'2 a location at which x|
~¢ is estimated ag_ =y1—l“l’1ln(21“1/s), for some chosen
e<1. Equation(14) is then integrated numerically frog_
with initial conditionsw(y_)=¢, w'(y_)=e\,(y_) (and
with 8 and A moderately smallso yielding a maximum of
|w| near toy=Yy,, followed by a minimum oflw| near to
y=2y,;—Yy_. The parameterg_ andB are then adjusted to
reduce too(e2) the minimum of|w|?+ K|w’'|? occurring on
a solution curvew(y) for y>y_ (with K~|x_|2). Once
y_ andB are identified yielding an acceptably small value
for this minimum, the corresponding pulse cenygris de-
termined by locating the maximum ofv|2.

V. NUMERICAL RESULTS AND DISCUSSION

For smallg and § (large v), Eq. (A5) shows the signifi-
cance of the parametér3~ ' Indeed, the initial approxi-
mation B, exists only forAB~Y3=2 which corresponds to
the threshold value for excess gathas a function of fre-
quency sliding-rater predicted by Kodama and Wabniiz]
(namely,a?B(1+48%)< % 5%. Figure 1 shows some pulses
|[W(Y)|=6"Y4u| for B=0.001 and3=0.002. For these val-
ues ofv (=10, 30), the associated frequency perturbations
®’(Y) are almost constant, though with a small-amplitude

nectionbetween these two manifolds. However, sincepRe tanh profile of chirdeven thoughv is not small, c.f. Eq(8)

=—y—1iB2+2B(BB2—A), it is clear that|a. | and|a_|
remain_small fory>y, but grow asy decreases below the
valuey. This suggests that the pulse cenyery, lies in

y<y.

and Sec. Il]. Other calculations fo3=0.001 confirm the
existence of similar pulses faxg~*=0.75, but show that
the boundary for the nonexistence of pulses is remarkably
close toA =3 8 throughout8<0.04. In fact, when pulses
exist, two families exisfcorresponding to the two negative

To confirm this conjecture, we consider the limiting equa-roots of Eq.(A5)]. Pulses of the second family have smaller

tion (8—0, A—0)

W' (y)+2iBW’ (y) + 2yw+2|w|?w=0

and make the substitutiom=e‘i§yx(y) to yield

X"(Y)—T2x+2|x|2x=—(T2+B2%+2y)x. (19

When the right-hand side is neglected, EP) is the NLS
equation having the familiar pulse solutiojds. Eq. (2)]

peak amplitude, but are unstable according to variational
theory[7,8].

For larger filter strengt3=0.1 and smallen= a/5%%
similar narrow pulses close in shape to a sech profile exist
(see Fig. 2 As v increases for fixed filter strength, the
peak value ofW| decreases gradually and the pulse broad-
ens. The pulses become more noticeably asymmetric for
larger » and the tanh-profile chirp®’(Y) [=8 Y46,
+aZ)] becomes prominersee Fig. 2b)]. Indeed, expres-
sions(8) remain remarkably accurate even for 3.0, so that
the perturbation analysis of Sec. Ill is a useful description of
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08v=0.17 —— From Eq.(Al) and its complex conjugate, we find the two

B=0I' - o
e — identities

d *' 2. %2 2., % * ' rE*
os | dy X X XXX =) FEXCET,

W)

0.6
* M

04 | E(X*X'_XX* )=X*X"—xx* =x*F—xF*.

02 r

; . . . Hence, for pulses withy| —0 asz— *, two integral con-
-40 -20 0 20 40 60 30 ditions arise
Y

FIG. 3. |W(Y)| for broad, asymmetric pulses existing fgr f (x* F+x'F*)dp=0, f (x*F—xF*)dp=0.
=0.08 whenv takes moderate values. e e

. . .. i i : id *
these pulses far beyond its expected region of validity Introducing into these the representatiops pe'®, x

Ll pe ' yields
However, for 8~0.08 andv~0.20 a second family of . .
smaller amplitude decidedly asymmetric, broad pulses have f, p2d77+4'8§J’, (p")?dn

been found by numerical search, as shown in Fig. 3. These

pulses, with moderate filter strength and with sliding—réte o w

and excess gaid comparably important, have parameber —2(2,BBZ—A+2,ByO)f p’¢'dny
of much larger modulus than the narrow pulses. Also, the ’°°

chirp ©'(Y) for these pulses is much closer to the com- _ [w

monly assumed linear ramp than to the tanh profiles shown +4BBJ p%(¢")%d7y

in Fig. 2(b). Moreover, a stability analysis currently being

undertaken shows that these pulses are stable in this param- o %

eter range. —4ﬁf 77p2¢'d77—4ﬁf ptp'dnp=0  (A3)
In summary, for a remarkably wide range of the param- o o

etersB, S, anda, there are pulses which are exactly non- and

distorting and which accelerate uniformly. Typically, their

profile is remarkably close to a sech curve, even though the — =, =,
frequency increases linearly with and has a pronounced (2B +2BY0—A)J pdn+ Zﬂf pdn
chirp through the pulse. o o
* 2 _ = 2 41 _
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PRAXIS XXI/BD/21642/99. mations
APPENDIX Fff secRT,7d7

By introducing into Eq. (14) the substitutionsw
—p@ By —v— ; _ ®

e x(m), 7=y—Yo, we obtain +4ﬁBlr‘l‘f secR Ty ptan T, 7d7=0

X"+ 2xx* —T?)x=F(x.x*.x",m), (A1)
and

where

_ _ =2 a2
FOnx* X' m)=4BBy’ —4i BBy~ 4i Bx’x* (268+2py,~ A1 [ secfiTydy

—2{n+2BA+2ip(yo+ n)—iA}x
(A2)

s}

+23F§f sechHI'; 7d7=0.

and where* denotes a complex conjugate. These yield the equations
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4B [2B+1=0, B2+ir?=pg"1A, 4BB3-4AB;—-1=0, (A5)

which are just the equations for the equilibrium points of the .
Kodama and Wabnitg7] analysis. The resulting cubic equa- has(two) roots with 3B;<0 only for AB =2 then giv-

tion for By, ing y,=(46—B;1)/88 andI';=(—4BB,/3) 2
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