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Accelerating solitons for sliding-frequency filter systems
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The sliding-frequency filter equation is shown to have similarity solutions which travel with steady profile
but with constant acceleration. Over a wide range of the gain, filter strength and sliding-rate parameters, the
pulse envelope is very well approximated by a sech profile. However, when the sliding rate is large, the chirp
differs greatly from the usually assumed linear variation of frequency through the pulse. The amplitude and
chirp are found for small and moderate sliding rate by a perturbation analysis and, for larger sliding rates, by
solving a nonlinear eigenvalue problem for a nonautonomous differential equation.
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I. INTRODUCTION

Ultralong distance fiber-optic transmission using solito
has been demonstrated@1# using periodically spaced erbium
doped amplifiers to counterbalance fiber loss. To supp
amplification of unwanted noise, filters are introduced
each amplifier, allowing passage of signals only in a narr
band centered at the central frequency of the soliton. E
this allows degradation by noise, unless the soliton freque
is incrementally shifted at each amplifier. The soliton is a
gradually to adapt to this frequency shift, but low-amplitu
noise, being governed by linear equations, cannot. This is
principle of sliding-frequency filter~SFF! transmission@2#.
In the limit for which amplifier spacing is short compared
the dispersion length, an appropriate evolution equation@3#
is

Nu[ iuZ1 1
2 uTT1uuu2u5 idu1 ib~]T1 i âZ!2u, ~1!

whered is the~averaged! excess gain,b is the filter strength,
2â is the~constant! frequency-sliding rate,Z is the~scaled!
propagation distance, andT a retarded time.

It is widely known that the undamped nonlinear Sch¨-
dinger ~NLS! equationNu50 possesses sech-envelope
lutions at all carrier frequencies, viz.

u5A expi $V1T1 1
2 ~A21V1

2!Z%sechA~T2V1Z!. ~2!

These show that the perturbationV1 in soliton speed is pro-
portional to the shift in carrier frequency~with associated
shift in wavelength being quadratic in bothV1 and the soli-
ton amplitudeA).

When an SFF system is designed to transmit pulses
frequency shift2âZ which is linear in the transmissio
‘‘distance’’ Z, it is self-consistent to seek solutions to Eq.~1!
having similarity variable

z5T1aZ21bZ. ~3!
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These are ‘‘accelerating solutions’’—recently shown to ex
in a number of optical systems@4–6#, such as dissipative
media with nonlinear saturable gain and photorefract
beams and existing also@3# for a related integrable equatio
in which the right-hand side of Eq.~1! is replaced byi âZu.

In Sec. II, the reduction of Eq.~1! to an ordinary differ-
ential Eq.~10! for a complex amplitudeW, consistent with
the similarity variable~3! is obtained. The ‘‘acceleration’’ is
a5â/2 while, in the equation,d and â appear only in the
combinationâ/d3/2[n @see Eq.~10!#. In Sec. III, a pertur-
bation method valid for any givenb but for unu!1 ~i.e.,
uâu!d3/2) yields a criterion determining the parameterb and
the initial conditions which allow Eq.~10! to possess isolated
pulse solutions. Section IV extends analysis allowing estim
tion of the parameters and initial conditions in Eq.~10!
which yield isolated pulse solutions for larger values ofn
constrained only by the relation

27n2b~114b2!&64.

The numerical and analytic results presented in Sec. V c
cerning Eq.~10! for general values ofb and for both small
and large values ofunu show that a profile ofuuu always
exists which is remarkably close to a sech curve. The exp
sions forb and for the pulse amplitude and width predict
in Sec. III are confirmed as good approximations for mod
ate values ofunu ~not just for unu!1). Also, the frequency
within the pulse is found to have chirp which isvery well
approximated by a tanh curve, rather than the linear ra
usually assumed. The tanh dependence is predicted by
perturbation analysis of Sec. III, as is the relation betwe
pulse half-width and amplitude.

II. ACCELERATING SELF-SIMILAR SOLUTIONS

We seek a solution to Eq.~1! in the form

u~T,Z!5eiu(z,Z)F~z! ~4!

with z given by Eq.~3! and witha, b, u, andF real.
Insertion of Eq.~4! into Eq. ~1! and multiplication by

214ib yields
ya
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~114b2!F9~z!12$2b@~â22a!Z2b#

1 i @~114b2!uz1~2a14b2â !Z1b#%F8~z!

2$~114b2!~uz!
212~2aZ1b14b2âZ!uz

12uZ14b2â2Z224bd2 i @~114b2!uzz

14b~âZ22aZ2b!uz24buZ12bâ2Z222d#%F~z!

12~112ib!@F~z!#350. ~5!

The ansatz~4! is self-consistent only if both the real an
imaginary parts of the coefficients in Eq.~5! depend onz
alone. From the coefficient ofF8(z), we deduce immediately
that 2a5â and that

u~z,Z!52âzZ1Q~z!1F~Z!,

so yielding the resultsuzz5Q9(z), uz1âZ5Q8(z), and
uZ52âz1F8(Z). In order that the real part of the coeffi
cient of F(z) is independent ofZ, it is necessary that

F8~Z!5 1
2 â2Z21âbZ1c0

for some constantc0. This yields the expression

u~z,Z!5Q~z!2~ âz2c0!Z1 1
6 â2Z31 1

2 âbZ21c1 , ~6!

so that Eq.~5! reduces to

~114b2!$F9~z!1 i @Q9~z!F12Q8~z!F8~z!#

2@Q8~z!#2F%12~112ib!$ ib@F8~z!1 iQ8~z!F#

1~ âz2c02 id!F1F3%

50. ~7!

It is observed in@2# that Eq. ~1!, for â[0, possesses
special solutions in which

F5A sechT, u5KZ1C ln~sechT!,

which correspond tob50, c05K. However, since these so
lutions impose four relations uponA, C, K, b, andd, they
apply only for special combinations ofb andd. Fortunately,
there is a generalization

F5A sechk~z2z0!, Q5C ln@sechk~z2z0!#, ~8!

which satisfies Eq.~7! for â50, b50 provided that

C5
8b

31A9132b2
5

A9132b223

4b
,

A25
3d

4b
~11A9132b2!,

k25
8bd

318b22A9132b2
, c05

d

2b
A9132b2. ~9!
06661
This defines a solutionF(z) and u(z,Z) to Eq. ~7! with â
50, b50 for all choices ofd andb, with z0 arbitrary.

Observe that expressions~8! become singular asb→0.
Since they describe isolated pulses in whichâ50, b50, it
is natural to rearrange Eq.~7! as

~114b2!W9~Y!12~112ib!$m02 i 1uWu2%W

522~112ib!$ iBW8~Y!1nYW%, ~10!

where

m0[
âz02c0

d
, Y[d1/2~z2z0!,

B[d21/2b, n[d23/2â,

and

F~z!eiQ(z)[d1/2W~Y!. ~11!

III. PERTURBATION ANALYSIS

Solutions to Eq.~10! may be sought by expanding inn as

W~Y!5Ŵ~Y!1nV~Y!1•••, B5nB11•••, ~12!

with Ŵ(Y)5Â sechk̂Yei Q̂(Y), Q̂(Y)5C ln(sechk̂Y), with
k̂5d21/2k, Â5d21/2A, and withA, C, andk given by Eq.
~9!, provided thatb is not too small. Then, inserting into Eq
~10! and takingO(n) terms gives the linear differential equa
tion for complex V(Y):

LV[~114b2!V9~Y!12~112ib!

3$~m02 i !V1Â2~sech2 k̂Y!~2V1e2i Q̂V* !%

522~112ib!$k̂B1~C2 i !tanhk̂Y1Y%Âsechk̂Y.

~13!

For Eq. ~13!, the four-dimensional space of compleme
tary functions has a two-dimensional subspace compose
functionsevenin Y and a two-dimensional subspace of fun
tions odd in Y. Moreover, iŴ(Y) belongs to the first sub
space andŴ8(Y) belongs to the second. Since, asY→` and
asY→2` there exist two-parameter families of unbound
solutions, theonly bounded contributions to the compleme
tary function have the formic1Ŵ(Y)1c2Ŵ8(Y), with
c1 , c2 real.

Since the right-hand side of Eq.~13! is an odd function of
Y, it is sufficient to seek odd, bounded solutionsV(Y) @add-
ing to V the even contributionic1Ŵ(Y) corresponds merely
to a constant perturbationnc1 to the phaseQ̂(Y)#. Moreover,
it is permissible to setV8(0)5 id1 (d1 real!, since inclusion
5-2
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of c2Ŵ8(Y) in V(Y) merely corresponds to a perturbation
z0. Thus, by solving numerically the three initial-value pro
lems

LV150, V1~0!50, V18~0!5 i ,

LV2522~112ib!kÂ~C2 i !tanhk̂Y sechk̂Y,

V2~0!5V28~0!50,

LV3522~112ib!ÂY sechk̂Y, V3~0!5V38~0!50,

to yield unbounded, odd functions, it is possible to selectd1
andB1 so that the combination

V~Y!5d1V1~Y!1B1V2~Y!1V3~Y!

remains bounded. The corresponding approximationW

'Ŵ(Y)1nV(Y) then has W(0)5Â1O(n2), W8(0)
5 ind11O(n2), so that, correct toO(n), the maximum of
uWu occurs atY50.

These calculations show that, for specified excess gaid,
there exist isolated pulses which accelerate uniformly~with
a5 1

2 â) and for whichuW(Y)u is very close to the familiar
sech profileÂ sechk̂Y5Â sechk(z2z0). In these, the phas
has chirp given by Q8(z)'2kC tanhk̂Y52kC tanhk(z
2z0) and the parameterb in Eq. ~3! is given by b

'nd1/2B15âd21B1. These profiles and chirp are found~see
Figs. 1 and 2! to give good approximations for a wide rang
of values ofb not only for small sliding raten[â/d3/2!1,
but also forn5O(1). Moreover, the predicted value ofb
gives a very useful approximation for the parameterB re-
quired in the computations in Sec. IV.

IV. GENERAL TREATMENT

Equation~10! may be put into the canonical form

w9~y!12~112ib!$ iB̄w8~y!1~y2 iD1uwu2!w%50,
~14!

through use of the substitutions

FIG. 1. Pulse envelopesuW(Y)u governed by Eq.~10! for b
50.001 and 0.002, and forn510 andn530.
06661
W~Y!5n1/3~114b2!1/6w~y!,

nY1m05n2/3~114b2!1/3y[y/D,

B̄5
B

n1/3~114b2!2/3
, D5

1

n2/3~114b2!1/3
. ~15!

Here,b andD ~or n) are parameters determined by the orig
nal Eq.~1!, while B̄ is adjustable. Our goal is to find pulse
like solutions to Eq.~14! for which w→0, w8→0 asy→
6`. For specifiedb and D, solutions may be expected t
exist only for selected values ofB̄, with corresponding peak
amplitudeuwu5uwumax at some locationy5y0[Dm0. Then,
the corresponding parametersn, B, d, and b follow from
Eq. ~11! when â is specified, while the pulse is centered o
the path

T1 1
2 âZ1d2BZ25z5~c0 /â !1~114b2!1/3n21/3d21/2y0

[z0.

Since c0 and c1 correspond merely to a shift in referenc
phase and in theT origin, they are set to zero without loss o
generality.

In seeking solutions withuwu small except nearz5z0, it
is appropriate to analyze the linearization

w8~y!5v~y!,

v8522~112ib!~y2 iD!w22iB̄~112ib!v, ~16!

FIG. 2. ~a! Some pulse envelopesuW(Y)u for b50.1; ~b! the
corresponding chirpQ8(Y).
5-3
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which may be put into the matrix form (w8 v8)T

5A(y)(w v)T, where the eigenvalues ofA are

l[a1 ig52 i ~112ib!

3$B̄6AB̄212~112ib!21~y2 iD!%. ~17!

The real partsa6 and imaginary partsg6 of these two ei-
genvalues ofA are found from the identity

~a22B̄b!1 i ~g1B̄!57 i ~112ib!

3AB̄212~112ib!21~y2 iD!,

so yielding the compact representation

l5l65a61 ig6

52 iB̄~112ib!6
r~y!1ur~y!u

$Rer~y!1ur~y!u%1/2
, ~18!

where

r~y![2~112ib!$y1 1
2 B̄21 i ~bB̄22D!%.

Since Rer(y)1ur(y)u.0 for all y, the eigenvaluesl6

satisfy Rel1[a1.a2[Rel2 . Moreover, except in some
vicinity of the location y5 ȳ[2 1

2 B̄212b(bB̄22D) at
which Rer( ȳ)50, the eigenvalues havea1.0 and a2

,0. Thus, outside this restricted portion of they axis, there
exists anunstable manifoldof solutions which, nearuwu50,
has (w8 v8)T'l1(w v)T. Along these solutions,uwu de-
creasesasy decreases, withv'l1w. Also, there is astable
manifold on which v'l2w ~and uwu decreases asy in-
creases!. Each of these manifolds is two dimensional@since
the system ~16! is invariant under all mapping
$w,v%°$weis,veis% for s real#. For chosen$D,b%, the re-
quired pulselike solution to Eq.~14! is described by acon-
nectionbetween these two manifolds. However, since Rr

52y2 1
2 B̄212b(bB̄22D), it is clear thatua1u and ua2u

remain small fory. ȳ, but grow asy decreases below th
value ȳ. This suggests that the pulse centery5y0 lies in
y, ȳ.

To confirm this conjecture, we consider the limiting equ
tion (b→0, D→0)

w9~y!12iB̄w8~y!12yw12uwu2w50

and make the substitutionw5e2 iB̄yx(y) to yield

x9~y!2G2x12uxu2x52~G21B̄212y!x. ~19!

When the right-hand side is neglected, Eq.~19! is the NLS
equation having the familiar pulse solutions@cf. Eq. ~2!#
06661
-

x5G sechG~y2y0!,

with center aty5y0, with amplitudeG, and with half-width
G21. Neglect of the right-hand side is a good approximati
provided that

uG21B̄212yu!G2 for Guy2y0u,4,

which is possible provided thaty0'2 1
2 (B̄21G2), with

G3>8.
For chosen$D,b%, a search procedure fory0 and B̄ is

used, starting from the valuesy1 and B̄1 ~see Appendix!.
Then, motivated by the approximationx'G1 sechG1(y

2y1), whereG1[$2B̄1
222y1%

1/2, a location at whichuxu
'« is estimated asy25y12G1

21ln(2G1 /«), for some chosen
«!1. Equation~14! is then integrated numerically fromy2

with initial conditionsw(y2)5«, w8(y2)5«l1(y2) ~and
with b andD moderately small! so yielding a maximum of
uwu near toy5y1, followed by a minimum ofuwu near to
y52y12y2 . The parametersy2 andB̄ are then adjusted to
reduce too(«2) the minimum ofuwu21Kuw8u2 occurring on
a solution curvew(y) for y.y2 ~with K'ul2u22). Once
y2 and B̄ are identified yielding an acceptably small valu
for this minimum, the corresponding pulse centery0 is de-
termined by locating the maximum ofuwu2.

V. NUMERICAL RESULTS AND DISCUSSION

For smallb andd ~largen), Eq. ~A5! shows the signifi-
cance of the parameterDb21/3. Indeed, the initial approxi-
mation B̄1 exists only forDb21/3> 3

4 , which corresponds to
the threshold value for excess gaind as a function of fre-
quency sliding-rateâ predicted by Kodama and Wabnitz@7#

~namely,â2b(114b2)< 64
27 d3). Figure 1 shows some pulse

uW(Y)u5d21/2uuu for b50.001 andb50.002. For these val-
ues ofn (510, 30), the associated frequency perturbatio
Q8(Y) are almost constant, though with a small-amplitu
tanh profile of chirp@even thoughn is not small, c.f. Eq.~8!
and Sec. III#. Other calculations forb50.001 confirm the
existence of similar pulses forDb21/350.75, but show that
the boundary for the nonexistence of pulses is remarka
close toD5 3

4 b1/3 throughoutb,0.04. In fact, when pulses
exist, two families exist@corresponding to the two negativ
roots of Eq.~A5!#. Pulses of the second family have small
peak amplitude, but are unstable according to variatio
theory @7,8#.

For larger filter strengthb50.1 and smallern5â/d3/2,
similar narrow pulses close in shape to a sech profile e
~see Fig. 2!. As n increases for fixed filter strengthb, the
peak value ofuWu decreases gradually and the pulse bro
ens. The pulses become more noticeably asymmetric
larger n and the tanh-profile chirpQ8(Y) @5d21/2(uz

1âZ)# becomes prominent@see Fig. 2~b!#. Indeed, expres-
sions~8! remain remarkably accurate even forn53.0, so that
the perturbation analysis of Sec. III is a useful description
5-4
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these pulses far beyond its expected region of valid
n!1.

However, for b'0.08 andn'0.20 a second family of
smaller amplitude decidedly asymmetric, broad pulses h
been found by numerical search, as shown in Fig. 3. Th
pulses, with moderate filter strength and with sliding-rateâ
and excess gaind comparably important, have parameterb
of much larger modulus than the narrow pulses. Also,
chirp Q8(Y) for these pulses is much closer to the co
monly assumed linear ramp than to the tanh profiles sho
in Fig. 2~b!. Moreover, a stability analysis currently bein
undertaken shows that these pulses are stable in this pa
eter range.

In summary, for a remarkably wide range of the para
etersb, d, and â, there are pulses which are exactly no
distorting and which accelerate uniformly. Typically, the
profile is remarkably close to a sech curve, even though
frequency increases linearly withZ and has a pronounce
chirp through the pulse.
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APPENDIX

By introducing into Eq. ~14! the substitutions w

5e2 iB̄yx(h), h5y2y0, we obtain

x91~2xx* 2G2!x5F~x,x* ,x8,h!, ~A1!

where

F~x,x* ,x8,h!54bB̄x824ibB̄2x24ibx2x*

22$h12bD12ib~y01h!2 iD%x

~A2!

and where* denotes a complex conjugate.

FIG. 3. uW(Y)u for broad, asymmetric pulses existing forb
50.08 whenn takes moderate values.
06661
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From Eq.~A1! and its complex conjugate, we find the tw
identities

d

dh
~x* 8x81x2x* 22G2xx* !5x* 8F1x8F* ,

d

dh
~x* x82xx* 8!5x* x92xx* 95x* F2xF* .

Hence, for pulses withuxu→0 ash→6`, two integral con-
ditions arise

E
2`

`

~x* 8F1x8F* !dh50, E
2`

`

~x* F2xF* !dh50.

Introducing into these the representationsx5reif, x*
5re2 if yields

E
2`

`

r2dh14bB̄E
2`

`

~r8!2dh

22~2bB̄22D12by0!E
2`

`

r2f8dh

14bB̄E
2`

`

r2~f8!2dh

24bE
2`

`

hr2f8dh24bE
2`

`

r4f8dh50 ~A3!

and

~2bB̄212by02D!E
2`

`

r2dh12bE
2`

`

r4dh

12bE
2`

`

hr2dh22bB̄E
2`

`

r2f8dh50. ~A4!

To leading order inb andD, we haver5G1 sechG1h with
f85O(b,D), so that by approximatingB̄ andy0 by B̄1 and
by y152 1

2 (G1
21B̄1

2) we obtain the leading-order approx
mations

G1
2E

2`

`

sech2 G1hdh

14bB̄1G1
4E

2`

`

sech2 G1h tanh2 G1hdh50

and

~2bB̄1
212by12D!G1

2E
2`

`

sech2 G1hdh

12bG1
4E

2`

`

sech4 G1hdh50.

These yield the equations
5-5
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4
3 B̄1G1

2b1150, B̄1
21 1

3 G1
25b21D,

which are just the equations for the equilibrium points of t
Kodama and Wabnitz@7# analysis. The resulting cubic equa
tion for B̄1 ,
lt,

p

.

06661
4bB̄1
324DB̄12150, ~A5!

has~two! roots withbB̄1,0 only for Db21/3> 3
4 , then giv-

ing y15(4d2B̄1
21)/8b andG15(24bB̄1/3)21/2.
pt.
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